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THE DATA EXECUTION MODULE OF THE VERTICAL WORKSTATION
OF THE AUTOMATED MANUFACTURING RESEARCH FACILITY

AT THE NATIONAL BUREAU OF STANDARDS

I. INTRODUCTION

        1.  CONTENTS

This paper discusses the Data Execution module of the Vertical Workstation (VWS) of the
Automated Manufacturing Research Facility (AMRF) at the National Bureau of Standards.
The Data Execution module is where numerical control code (NC-code) for the
workstation’s vertical milling machine is prepared.  The descriptions pertain to the system
in use during the summer of 1987.

Chapter II tells what the module does in its three phases of action: initialization, stepping
through the process plan and closing.

Chapter III discusses the workpiece model used by the module:  how it is initialized, kept
up to date as steps of the process plan are executed, and used.

Chapter IV discusses machining metal and describes the machining operations used in the
system.

Chapter V discusses automatic NC-coding in the VWS2 system:  what NC-code looks like,
how NC-code is interpreted, the general approach to NC-coding taken by the module, and
what the machining algorithms are which have been implemented.

Chapter VI discusses the LISP software which comprises the module.

        2.  AUDIENCE

The paper is intended to be useful to people interested in concepts and technical details of
the VWS, particularly AMRF personnel who are running the VWS or maintaining or
improving the software for the VWS.  The paper is intended to be useful also to other
researchers in automated manufacturing. Knowledge of (i) the computer language LISP, (ii)
machining tools, and (iii) NC-code language is useful but not essential to reading this paper.
Detailed documentation of the LISP functions that are involved with the systems described
here is being prepared separately.

        3.  BRIEF VWS DESCRIPTION

The VWS is a computer-integrated automated machining workstation.  It includes a control
system, a computer-aided design system, an automatic process planning system, and an
automatic NC-code generator.  The principal machinery is a milling center (Monarch VMC-
75 with a GE2000 controller) and a robot (Unimate 4070 with a Val II controller) to tend
the milling center. There is quite a bit of ancillary hardware.  The system is controlled from
a microcomputer (Sun 3/160 with 6M memory, BW monitor).  Running in stand-alone
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mode, it is possible to design and machine a simple metal part within an hour.  The VWS
may also be run as an integrated part of the AMRF. The workstation is described in more
detail in [K&J1].

The software for the VWS is written in the Franz LISP dialect of the computer language
LISP.  In this paper this software is called the VWS2 system.  Six principal modules
comprise the VWS2 system:  the Production Management Operating System (the control
system), the State Table Editor, the Equipment Program Generator, the Part Design Editor,
the Process Planner, and the Data Execution module.

The Part Design Editor, Process Planning and Data Execution modules, as well as other
system capabilities, may be accessed by the user through a small user interface called
vws_cadm.  Vws_cadm asks the user questions about what the user wants to do and then
activates the appropriate module or other capability accordingly.

To produce a part from scratch, the user sits at the Sun workstation and creates a design
using the Part Design Editor.  The Process Planner is then called to write a plan for how to
machine a part of that design.  Next NC-code is generated automatically from the design and
the plan by the Data Execution module.  Finally the user tells the control system to make the
part.  The control system coordinates the activities of the workstation equipment so that the
part blank is loaded onto the milling machine, the NC-code is sent to the milling machine
and executed (making the part), and the finished part is unloaded.

        4.  DESIGN PROTOCOL

The VWS2 system uses a feature-based design protocol.  The design protocol is described
in detail in [K&J2].  The design of a part is expressed as a list of features on a piece of stock.
The piece of stock is always a rectangular block.  The design protocol currently assumes that
all features are being made on one side of the block.

Although all the features and subfeatures are purely geometric, they were selected to be
included in the system on the basis of being features commonly found on machined parts
that could be produced in one, or at most a very few, machining operations.  Each feature
and subfeature is a removed volume.

The design of a part is a purely geometric description of the shape of a part and gives no
idea of what machining operations are required to make the part.

The primary features in the system in September, 1987 are:  chamfer_out, groove, hole,
pocket, straight_groove, text, contour_groove, contour_pocket, and side_contour.  There
are also subfeatures which may be made on the primary features:  chamfer_out, chamfer_in,
countersink, and thread.  A feature is specified in the system by giving its name and the
values of several parameters which specify its location, shape, and size.
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The design protocol includes the use of "reference features".  If feature A is to be made at
the bottom of feature B, then one of the parameters of feature A is "reference_feature", and
the value of that parameter is the feature number of feature B.  Normally, if B is the
reference feature for A, the outline of feature A must fit within the outline of feature B, and
the bottom of feature B must be flat (there are exceptions in special cases).

Although a design could be prepared according to the VWS2 design protocol using a text
editor, the only reasonable way to make a design is by using the VWS2 Design Editor
module.  The Design Editor is a friendly system which runs on a Sun computer that engages
the user in a dialog to find out what the user wants to make and prepares the design
document for the user. An example design is shown in Table 3 (page 10).

        5.  PROCESS PLAN PROTOCOL

The core of a process plan which is to be executed by the Data Execution module is a set of
operations, or "steps", that must be carried out in order to make some or all of the features
from a design on a workpiece.  In addition to a set of steps, a process plan may also have (1)
a list of requirements of tools and workpieces needed to carry out the plan, (2)
administrative information such as the name of the plan, the id_number of the design to
which the plan is tied, the version number, etc., and (3) a list of parameters used in the plan
(if the plan is parametric).

Each step in a plan describes some operation to be carried out.  The description is given by
naming the operation (which we will call the "work element") and giving the names and
values of several parameters required to describe the operation fully.  Each work element
has its own set of parameters, but a given parameter type may be used for many or all types
of work elements.  A bare-bones step includes the work element, the number of the feature
from the design to which the work element applies, the name of the type of tool needed to
carry out the step, and a list of "precedent steps" which must be carried out before the step
under consideration. Additional information which is added at some point usually includes
a changer slot from the milling machine in which a tool of the correct type may be found,
spindle speed, and feed rate.

For steps which refer to features, most or all of the geometric information needed to carry
out the step is extracted from the design, and is not carried in the process plan.  For steps
which do not refer to features (such as zero-setting steps), geometric information is carried
in the process plan.

In the VWS2 system, a process plan may have two formats: the standard AMRF format or
a LISP-readable format.  To be executed, a plan must be in the LISP environment in LISP-
readable format.  A reading facility which sets up a LISP-readable plan in the environment
from a file in standard AMRF format is part of the VWS2 system, as is a facility which prints
a standard file from a LISP-readable plan in the environment.

A detailed explanation of process plans for the VWS milling machine, including examples,
is given in [KRA1].  An example of a LISP-readable process plan is shown in Table 2 (page 9).
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        6.  SUMMARY OF DATA EXECUTION MODULE CAPABILITIES

The VWS2 Data Execution Module is best known as the automatic NC-code generator used
in the VWS.  However, it does much more than generate NC-code.  The only important
action the module always takes when it runs is to build a data model of a workpiece.  An
example of a model is shown in the bottom half of Table 1.  In addition to building this
model, the module has five processing and output options:  (1) write NC-code, (2) enhance
a process plan, (3) verify a process plan, (4) graphically emulate execution of a process plan,
and (5) save the model.  The five options are independent; any combination of them may be
used simultaneously.

The enhancement of a process plan has several elements:  adding or deleting steps of the
plan, picking a specific changer slot for each tool, and calculating spindle speeds, feed rates,
stepovers, and vertical pass depths, if necessary.  The input process plan may already be
enhanced. Any step of the input process plan may already contain values for any of: spindle
speed, feed rate, stepover, or vertical pass depth.

The incoming workpiece may be a partly machined part, as long as the data model of the
workpiece is correct.  The same process plan may be used to finish many differently shaped
partly machined workpieces, as long the features on the incoming workpieces are all given
in the design which is named in the plan.  This is accomplished by simply removing the steps
of the plan needed to produce any feature that is already present on the incoming workpiece.

Conversely, a process plan does not need to produce all the features from a design.  Thus,
the VWS may produce partly machined parts.  The system will produce a data set correctly
representing a partly machined part.

Once the VWS2 LISP environment is set up on a Sun computer, the Data Execution module
may be used via the "vws_cadm" friendly front end, or by a LISP function call to
"execute_plan".

With all five options on, the Data Execution module, running in uncompiled LISP on a Sun
3/160 microcomputer with 6 megabytes of on-board memory and floating point hardware,
will write NC-code at the rate of about 200 lines per minute.  With only the NC-coding
option on the rate roughly doubles.
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        7.  RELATED READING

This paper is one of about a dozen papers being prepared as part of the AMRF
documentation to describe all aspects of the VWS.  The others are [JUN], [KRA1], [KRA3],
[KRA4], [KRA5], [K&J2], [K&S2], [LOVE], [NA&J], and [RUDD].  Other papers,
prepared for professional meetings, also describe the VWS [KRA2], [K&J1], and [K&S1].

The brief descriptions of the design protocol and the process plan protocol given above in
sections 4 and 5 are not adequate for a detailed understanding of the Data Execution Module.
The reader who wants details is referred to [K&J1] or [K&J2] for the design protocol and to
[KRA1] or [KRA2] for the process plan protocol.

Some of the functions of the Data Execution module are not described in detail in this paper.
In particular, process plan enhancement is dealt with in Chapter V of the process planning
paper [KRA1], and seven types of verification carried out in the module are described in
various chapters of the verification paper [K&S2].
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II. DATA EXECUTION MODULE OPERATION

        1. INTRODUCTION

The Data Execution module capabilities were summarized in section 6 of Chapter I.  The
operation of the module may be roughly divided into three phases:  initialization, stepping
through the process plan, and termination.  The module may be used directly from LISP.  An
example of a function call to the module is:

 (execute_plan  ’datex_plan  ’datex_part  ’datxnc  ’datex_plan_enhanced’  soft  t  ’vise  ’top_of_part)

This function call means: run the Data Execution module on the plan named "datex_plan",
using the workpiece "datex_part".  Write NC-code to the file "datxnc".  Save the enhanced
version of the plan in the file named "datex_plan_enhanced".  Put verification on soft.  Draw
a picture emulating the machining process.  Assume for the purposes of verification and NC-
code writing that the part is to be milled in the vise.  Establish z-zero by probing the top of
the part (and, possibly, offsetting from there).

What happens when this function call is made is shown in several tables and figures
throughout this chapter.  The function call itself appears at the top of Table 1.  That table
shows the messages sent back to the user during module operation.  In a test run, the module
carried out the function call in just over one minute.  The process plan "datex_plan" which
is being executed is shown in Table 2.  To illustrate the flexibility of the module, this
process plan contains non-sequential precedent steps, one speed, and one pass depth.  This
plan is not much like the one produced by the VWS2 Process Planning module, which would
use sequential precedent steps and put speeds and pass depths in either all or none of the
steps for which they are appropriate.

The name of the design does not appear in the function call.  The name of the design is found
in the process plan.  In the example the design is called "datex_design".  The data used by
the system giving the design and the workpiece are shown in Table 3.  The design has three
features in it: a countersunk hole, a chamfered pocket to the right of the hole, and the letter
"D" at the bottom of the pocket.  The workpiece has already been partially machined.  It has
the hole in it, but the hole is not yet countersunk.  Figure 1 (page 17) shows a picture of the
part without the letter "D". The process plan is a plan for making the hole and the pocket,
but not the letter "D".

In actual use, the vws_cadm friendly front end would normally be used to run the module,
rather than making a direct function call.  This is a great deal easier than trying to remember
what all those arguments mean and what the correct order is.  In the test run, it took about
30 seconds to answer vws_cadm’s questions so that it could construct the function call.
Using vws_cadm has the added advantage that vws_cadm will print the description of the
finished workpiece to a file if the user wishes.  The direct function call results in the
workpiece description being the value returned by LISP.  The last half of Table 1 is the final
workpiece description.
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Table  1.  Data  Execution  Screen  Messages
  (pp_plist (execute_plan ’datex_plan ’datex_part ’datxnc
               ’datex_plan_enhanced ’soft t ’vise ’top_of_part))

  Starting design enhancement.
  Design enhancement completed successfully.
  Feature 1 hole is OK.
  Feature 2 pocket is OK.
  Feature 3 text is OK.
  Starting process plan enhancement, phase 1.
  Process plan enhancement, phase 1, completed successfully.
  Starting process plan enhancement, phase 2.
  Process plan enhancement, phase 2, completed successfully.
  Fixturing is OK.
  Step 1 initialize_plan is OK.
  Feature 1 hole is OK.
  Step 2 set0_corner is OK.
  Step 3 set0_z is OK.
  Step 5 mill_pocket is OK.
  Step 4 machine_chamfer_in is OK.
  Step 6 machine_countersink is OK.
  Step 7 close_plan is OK.

  (workpiece
    features    (features
            1           (1
                 countersink_diameter 0.5
                 feature_type             hole
                 center_x                  1
                 center_y                  1
                 diameter                  0.316
                 depth                      0.6
                 bottom_type           conical)
            2           (2
                 chamfer_in_depth     0.06
                 feature_type            pocket_corners
                 upper_l_x               2
                 upper_l_y               2.5
                 lower_r_x              5
                 lower_r_y              0.5
                 depth                     0.3
                 corner_radius          0.4))
     header      (header
         workpiece_id    datex_part
         design_id   datex_design
         material    aluminum
         block_size  (block_size
                  length      6.95
                  width       2.975
                  height      0.735)
        description "data execution demo part"))

INITIAL COMMAND FROM USER

ENHANCE THE DESIGN

VERIFY THE DESIGN

ENHANCE THE PROCESS PLAN

CHECK FIXTURING
VERIFY STEP 1 & INITIALIZE
VERIFY WORKPIECE

VERIFY & EXECUTE PLAN

PRINT OUT WORKPIECE
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Table  2.  Process  Plan
  This table shows the LISP-readable unenhanced process plan file for the example in
  Chapter II.

  (setplist ’datex_plan ’(
     header (header
             plan_id      datex_plan
             design_id  datex_design
             material    aluminum)
     steps  (steps
             1   (1   work_element       initialize_plan
                         prog_name          "data execution demo design")
             2   (2   work_element      set0_corner
                         tool_type_id         probe_0.25
                         corner                   1
                         x_offset                0.0
                         y_offset                0.0
                         near_x                  16.825
                         near_y                  7.425
                         precedent_steps  (1))
             3   (3   work_element      machine_chamfer_in
                         feature_id             2
                         tool_type_id         chamfer_0.375_3_abs
                         speed                    5103
                         precedent_steps  (4 2))
             4   (4   work_element       mill_pocket
                         feature_id             2
                         tool_type_id         end_mill_0.625_2_ab
                         precedent_steps  (5))
             5   (5   work_element      drill_hole
                         feature_id             1
                         tool_type_id         drill_0.316_2_abs
                         pass_depth          0.3
                         precedent_steps  (2))
             6   (6   work_element      machine_countersink
                         feature_id             1
                         tool_type_id         countersink_0.75_1_ab
                         precedent_steps  (3 2 4))
             7   (7   work_element      close_plan
                         precedent_steps  (6 3)))
     tool_requirements (probe_0.25   end_mill_0.625_2_ab  drill_0.316_2_abs
                                      chamfer_0.375_3_abs   countersink_0.75_1_ab)))
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The Design

 (setplist ’datex_design ’(
  features    (features
    1 (1
            feature_type                   hole
            center_x                         1
            center_y                         1
            diameter                         0.316
            depth                              0.6
            bottom_type                  conical
            countersink_diameter   0.5)
   2  (2
            feature_type                  pocket_corners
            upper_l_x                      2
            upper_l_y                      2.5
            lower_r_x                      5
            lower_r_y                      0.5
            depth                             0.3
            corner_radius                0.4
            chamfer_in_depth         0.06)
   3  (3
            feature_type                  text
            text                                "d"
            font                                broad
            lower_l_x                      3
            lower_l_y                      1
            height                            1
            depth                             0.02
            line_width                     0.1356466
            reference_feature         2))
  header      (header
    design_id     datex_design
    material       aluminum
    block_size  (block_size
                             length      6.95
                             width       2.975
                             height      0.735)
    description "data execution demo design")))

The Workpiece

 (setplist ’datex_part ’(
  features    (features
    1 (1
             feature_type             hole
             center_x                   1
             center_y                   1
             diameter                   0.316
             depth                        0.6
             bottom_type            conical))
  header      (header
     workpiece_id  datex_part
     design_id        datex_design
     material          aluminum
     block_size      (block_size
                                 length      6.95
                                 width       2.975
                                 height      0.735)
     description "data execution demo part")))

  This table shows the LISP-readable files which set up a design and a workpiece for
  the example used in Chapter II.

Table  3.  Design and Workpiece
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        2.  INITIALIZATION

        2.1. Overview

During initialization of the execution of a process plan:
A. The design is enhanced.
B. If the verification option is on, the design is verified.
C. The process plan is enhanced (unless the input plan has been enhanced).
D. Step 1 of the plan (initialize_plan) is carried out.
E. If the drawing option is on, the initial view of the workpiece is drawn, and, if the

verification option is also on, the workpiece is verified.
F. The workpiece model is set up.
G. The model of the fixturing, including obstacles, is set up.
H. If the NC-coding option is on, a working data base is set up and the first seven lines

of pseudocode are generated.

The verification operations carried out during initialization are quite extensive.  They are
described in Chapter IX of the verification paper [K&S2].

Design enhancement is also extensive.  It is described in Chapter II of the design protocol
paper [K&J2].

        2.2. Workpiece Model

Workpiece models are described in Chapter II, section 2.12, of [K&J2]. To make the initial
model of the workpiece, the module copies the property list of the workpiece named in the
function call.  If the workpiece is too tall, its height is changed to the height given in the
design.  If the workpiece has a "slab", the slab is removed.  These two things are done in
conjunction with adding steps to the process plan, as described next.

When the module is used from vws_cadm, the user is asked to name a workpiece.  A check
is made of the property list of that name.  If the property list exists and is in good format,
that model is used.  If there is no property list for the name, vws_cadm makes one, assuming
that the workpiece is a blank block the same size as the one specified in the design.

        2.3. Process Plan Enhancement

Process plan enhancement takes place in two phases.  These are described in detail in
Chapter V of the process planning paper [KRA1].  In this section we will follow what
happens to our example.  Table 2 and Table 4 show the "before and after" of enhancement.
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In phase 1 of enhancement, because the user has asked to have the top of the workpiece used
for establishing z-zero, a new step, set0_z, is added as step 3.  Then the plan is renumbered
so that there are no duplicate numbers.  Precedent step numbers must be updated as part of
the renumbering.  In order that set0_z be carried out immediately after step 2 (which is
set0_corner), the precedent step for step 3 is step 2, and any operation which has step 2 as
a precedent step has step 3 added to its list of precedent steps.

If the workpiece in our example had no features and was too thick, a face milling operation
would have been added to bring the workpiece down to the proper thickness.  If the
workpiece had had the "slab" property (see the design protocol paper [K&J2] Chapter II,
section 2.12), a face milling operation to remove the slab and a set0_corner operation to find
the block below the slab would have been added.

In phase 2 of enhancement, the module looks at the process plan and culls out any steps that
would make features or subfeatures which are already on the workpiece.  In our example,
step 5 of the process plan is a hole drilling operation to make feature 1.  Since feature 1 is
already in the part, step 5 is removed from the process plan.  After removal, any other step
which had the removed step as a precedent step (step 4 in the example) has the precedent
steps for the removed step added to its list of precedent steps. Thus, step 2 is added to the
list of precedent steps of step 4 in our example.  Then the plan is renumbered so that there
are no gaps in the numbering.  Precedent step numbers must be updated as part of the
renumbering.

Notice that the countersinking step is not culled out because the hole in the workpiece is not
yet countersunk.

Although only one step has been added and one deleted, the net effect on the step numbers
and the precedent steps is significant, as may be seen by comparing these items on Table 2
with the same items from Table 4.

Also in phase 2 of enhancement, the slot number of a changer slot on the milling machine
which has a tool of the tool_type_id given in each step is inserted in the step.  This is done
by examining the data model of the tools currently on the milling machine.  If any necessary
tool is not on the machine, an error message is sent and the module quits work.  Also in
phase 2, any step which requires a stepover, speed, feed_rate or pass_depth, has values for
the appropriate parameters added.  If there are existing values, such as the speed for the
chamfering operation, these values are used.

Finally a new tool_requirements list is prepared from the enhanced steps. In our example,
since the hole drilling step has been deleted, the drill which appears in the list of tool
requirements for the unenhanced plan does not appear in the enhanced plan.
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    4   (4
             work_element     machine_chamfer_in
             feature_id            2
             tool_type_id        chamfer_0.375_3_abs
             changer_slot       6
             speed                  5103
             feed_rate            28
             precedent_steps (3 5 2))
    5   (5
             work_element     mill_pocket
             feature_id            2
             tool_type_id        end_mill_0.625_2_ab
             changer_slot       12
             stepover              0.3125
             speed                   2750
             feed_rate              17
             pass_depth          0.3125
             precedent_steps  (3 2))
   6   (6
             work_element   machine_countersink
             feature_id         1
             tool_type_id     countersink_0.75_1_ab
             changer_slot    4
             stepover           0.375
             speed                2291
             feed_rate          5
             precedent_steps (3 4 2 5))
    7   (7
             work_element      close_plan
             precedent_steps  (6 4)))

   tool_requirements (
           probe_0.25
           chamfer_0.375_3_abs
           end_mill_0.625_2_ab
           countersink_0.75_1_ab)))

  (setplist ’datex_plan ’(
     header (header
             plan_id        datex_plan
             design_id    datex_design
             material      aluminum)
     steps  (steps
         1   (1
                  work_element    initialize_plan
                  prog_name
                     "data execution demo design")
         2   (2
                  work_element       set0_corner
                  tool_type_id          probe_0.25
                  changer_slot         40
                  corner                    1
                  x_offset                 0.0
                  y_offset                 0.0
                  near_x                   16.825
                  near_y                   7.425
                  precedent_steps   (1))
          3   (3
                  work_element       set0_z
                  tool_type_id          probe_0.25
                  changer_slot        40
                  x_loc                     20.3
                  y_loc                     8.9125
                  offset                    0.0
                  precedent_steps  (2))

TABLE 4.  Enhanced  Process  Plan

  This table shows the LISP-readable enhanced process plan file for the example of
  Chapter II.
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        2.4. Process Plan Sequencing

A list of step numbers giving the order in which the plan will actually be executed is
constructed during initialization as follows.  This sequencing is done using a working copy
of the enhanced plan.

A.  It is assumed that step 1, initialize_plan, will be executed first.
B.  Step 1 is removed from the list of precedent steps of every step.
C.  All the steps which have no remaining precedent steps are found and ordered so as

to minimize tool changes.  This group of step numbers is added to the sequence
number list, and the steps themselves are removed from the working copy of the plan.

D.  The numbers found in C are removed from the precedent steps of the steps left in the
working copy of the plan.

Items C and D repeated until the group of steps found in C is empty.  If there are any steps
left in the working copy of the plan at this point, there must have been an error in the
assignment of precedent steps in the original process plan, so an error message is returned
and the module stops work.  If the working copy is now empty, the sequence list is returned.

This method of sequencing was chosen to ensure that precedent requirements are followed,
to check the validity of the requirements, and to give an efficient sequence.  Alternatives to
steps C and D which result in even fewer tool changes are feasible but more complicated;
none has been tried.

As may be seen in Table 1 and Table 5, the order in our example is 1, 2, 3, 5, 4, 6, 7.

        2.5. Data Base Initialization

The VWS2 system includes a "world model".  This is a hierarchically arranged database of
information about the workstation.  When the Data Execution module starts up, the
"fixturing" branch of the world model is reset by looking at the function call to see whether
the vise or the pallet area is being used, and extracting the correct description from
elsewhere in the world model.  If the vise is being used, the description of the obstacles in
the vicinity of the fixture is modified according to the size of the workpiece.  This is
described in detail in Chapter VI of the verification paper [K&S2].

Several large LISP property lists are set up under the following names:
A.  drawp - for use by the graphics system if the drawing option is on
B.  mockup - for use by execute_plan
C.  mtool - for use by the NC-coding system.

        3.  STEPPING THROUGH THE PROCESS PLAN

        3.1. Introduction

Once initialization is complete, the Data Execution module feeds the steps of the enhanced
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process plan (in the order specified in the sequence list) into the execute_step function,
which handles all but the init_plan and close_plan steps.  This section describes the
operation of the execute_step function on a single step.

First, if verification is on, the step is verified.  If verification fails while verification is "on
hard", or if verification fails while verification is "on soft" and the user elects not to
continue, the module quits.

Second, if the NC-coding option is on, an NC-coding function is called on to write
pseudocode.

Third, if the drawing option is on, and the step requires drawing, a drawing function is
called.

Fourth, the workpiece model is updated.  If the update fails, an error message is sent and the
module quits.  Note that workpiece updating is the only thing that always happens.  Of
course, some steps have no effect on the model, but that is not determined by execute_step
itself.

        3.2. Function Call Assembly

A somewhat intricate method of constructing function calls is used for verification, NC-
coding and drawing.  Each function call is built from four parts.

The first part is the name of the function.  It is obtained from the "machine_ops" database.

The second part is the values of parameters present in the step.  The names of these are
obtained from the "machine_ops" database, and then their values are extracted from the step.

The third part is the values of parameters present in the feature named in the step.  The
names of these are obtained from the "machine_ops" database and then their values are
extracted from the enhanced design.

The fourth part is the values of some local variables present in the execute_step function.
The names of these are obtained from the "machine_ops" database and then the names are
simply evaluated to get the current local value.  The drawing system does not use this fourth
part. The fourth part used by the drawing system is the number of the changer slot given in
the step.

To carry out a function, parts two, three, and four are joined together into a single list, and
the chosen function is applied to the list (by the LISP "apply" function).

There are 19 machine operations that may be carried out by execute_step. Each one has a
verification function and an nc-coding function.  Most of them have drawing functions.
Thus, over 50 different functions for verification, NC-coding and drawing may be called
through this function call assembly process.
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        4.  CLOSING

        4.1. Introduction

Stepping through the process plan stops with the next-to-last step on the sequenced list.  The
last step on the list must be close_plan or execution of the plan would have aborted earlier.
If verification is on, this step is verified.  If drawing is on, the drawing is remasked.  If NC-
coding is on the last six lines of pseudocode are written, and the pseudocode is printed as
real code to a file.  The features on the part model, which may have been added in random
order, are sorted into numerical order.  The property list of "mockup" is wiped out.  The
drawing is not wiped out but is left on the screen for further use.  If drawing is on, a copy
of the pseudocode will be given to the drawing system.

        4.2. Printing Pseudocode

If execution of the enhanced process plan has continued to completion and the NC-coding
option is on, pseudocode which was assembled while stepping through the plan will be
printed to the file named in the function call.  In our example the file is "datxnc".  A copy
of the file is shown in Table 5.  Blocks of code in the table have been shaded and numbered
with the number of the step from the enhanced process plan which caused the code to be
written.  Note that the order of the blocks of code is the order shown in Table 1, which was
established the by the module’s plan sequencer.

        4.3. Use of Graphics for Flashing and Tool Path

After the end of module execution, three graphics facilities may be used to help the user
understand the machining process better: flash_step, flash_feature, and draw_tool_path.  All
three of these are available to the expert user from LISP, but only draw_tool_path is
available through vws_cadm.

The LISP command (flash_step 5) will cause the part of the drawing that was generated by
execution of step 5 in the enhanced plan to flash off and on a few times.  Any other step
number can be used in place of 5.  If nothing was drawn as a result of step 5, the system will
print a message that says as much.

The LISP command (flash_feature 2) will cause the drawing of feature 2 to flash off and on
a few times.  If feature 2 has not been drawn, the system will print a message that says so.

The tool path drawer will draw a picture of the path of the center of the tip of the tool.  The
drawing is done from the pseudocode.  A full description of tool path drawing is given in
Chapter XII of the verification paper [K&S2].  Magnified examples of tool path drawings
(top view only) are shown in Figure 8 (page 53) and Figure 9 (page 54).
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Figure  1.  Data  Execution  Drawing

This figure shows the drawing made during operation of the data execution module.
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Table  5.  NC-Code

1

2

3

5

5
(cont.)

4

6

7

n0001 (ID,PROG,datxnc,data execution demo design,1)
n0002 g53
n0003 p69 = +0.735
n0004 p68 = +0.0
n0005 g90 g0 w(p69+(p68-10.5)) m6
n0006 p91 = 1.5
n0007 p12 = 91 m950
n0008 p90=50 p88=-.25 p89=40
n0009 p83=+16.825 p84=+7.425 p85=1
n0010 p70=0
n0011 g53 m9
n0012 g0 g90 m5 m6
n0013 g90 g0 x+36.5 y+15.0
n0014 ! Changing tool to probe for setting x_zero and y_zero
n0015 t(p89) m28 m67 m6
n0016 x(p83) y(p84)
n0017 (GSUB,OUTVWS)
n0018 p66=(p97+0.0) p67=(p98+0.0)
n0019 g56 g90 x(p66) y(p67)
n0020 p90=50 p89=40
n0021 p77=+20.3 p78=+8.9125
n0022 g53 m9
n0023 g0 g90 m5 m6
n0024 g90 g0 x+36.5 y+15.0
n0025 g90 t(p89) m28 m67 m6
n0026 ! Changing tool to probe for setting z_zero
n0027 p70=0 x(p77) y(p78)
n0028 (GSUB,INTVWS)
n0029 p91 = (p92+4.424+0.0)
n0030 p12 = 91 m950
n0031 g56 g90 x(p66) y(p67)
n0032 ! 0.3 by 3 by 2.0 pocket
n0033 ! Changing tool to 0.625 inch diameter end_mill
n0034 g90 g0 m6 m9
n0035 g53
n0036 g90 g0 x+36.5 y+15.0
n0037 g90 g0 s2750 t12 d12 m3 m6
n0038 g56 g90 x(p66) y(p67)
n0039 m8
n0040 x+4.0 y+1.5
n0041 g0 z+0.1
n0042 g1 z+0.0 f5
n0043 x+3.0 y+1.5 z-0.2679
n0044 x+4.0 y+1.5 z-0.3
n0045 x+3.0 y+1.5
n0046 g0 z+1.0
n0047 x+4.0 y+1.5
n0048 z+0.1
n0049 g1 z-0.3 f40 m8 m72
n0050 f17
n0051 x+4.3125 y+1.1875
n0052 x+2.6875
n0053 y+1.8125
n0054 x+4.3125
n0055 y+1.1875
n0056 g1 x+4.6 y+0.875
n0057 g1 x+2.4
n0058 g2 x+2.375 y+0.9 r+0.025
n0059 g1 y+2.1
n0060 g2 x+2.4 y+2.125 r+0.025

n0061 g1 x+4.6
n0062 g2 x+4.625 y+2.1 r+0.025
n0063 g1 y+0.9
n0064 g2 x+4.6 y+0.875 r+0.025
n0065 g1 x+4.6 y+0.8225
n0066 g1 x+2.4
n0067 g2 x+2.3225 y+0.9 r+0.0775
n0068 g1 y+2.1
n0069 g2 x+2.4 y+2.1775 r+0.0775
n0070 g1 x+4.6
n0071 g2 x+4.6775 y+2.1 r+0.0775
n0072 g1 y+0.9
n0073 g2 x+4.6 y+0.8225 r+0.0775
n0074 g0 z+1.0
n0075 x+4.6 y+0.8125
n0076 z+0.1
n0077 g1 z-0.3 f8
n0078 f17
n0079 g3 x+4.6875 y+0.9 r+0.0875
n0080 g1 y+2.1
n0081 g3 x+4.6 y+2.1875 r+0.0875
n0082 g1 x+2.4
n0083 g3 x+2.3125 y+2.1 r+0.0875
n0084 g1 y+0.9
n0085 g3 x+2.4 y+0.8125 r+0.0875
n0086 g1 x+4.6
n0087 ! Changing tool to 0.375 inch diameter chamfer
n0088 g90 g0 m6 m9
n0089 g53
n0090 g90 g0 x+36.5 y+15.0
n0091 g90 g0 s5103 f28 t6 d6 m3 m6
n0092 g56 g90 x(p66) y(p67)
n0093 x+2.4 y+0.5938
n0094 m8
n0095 g0 z+0.1 ! 0.06 wide chamfer
n0096 g1 z-0.1538
n0097 g1 x+4.6
n0098 g3 x+4.9062 y+0.9 r+0.3062
n0099 g1 y+2.1
n0100 g3 x+4.6 y+2.4062 r+0.3062
n0101 g1 x+2.4
n0102 g3 x+2.0938 y+2.1 r+0.3062
n0103 g1 y+0.9
n0104 g3 x+2.4 y+0.5938 r+0.3062
n0105 ! Changing tool to 0.75 inch diameter countersink
n0106 g90 g0 m6 m9
n0107 g53
n0108 g90 g0 x+36.5 y+15.0
n0109 g90 g0 s2291 f5 t4 d4 m3 m6
n0110 g56 g90 x(p66) y(p67)
n0111 x+1.0 y+1.0
n0112 m8
n0113 g82 r+0.1 z-0.2744 d4 p3=.5 ! 0.5 dia
n0114 g53 m9 m5
n0115 g90 g0 w-9.0 m6
n0116 p91 = 0.0
n0117 p12 = 91 m950
n0118 g90 g0 x+0.5 y+19.5
n0119 (END,PROG)
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        5.  DATA REQUIREMENTS

This section briefly describes data requirements of the Data Execution module.  The data
requirements of the VWS2 system and the proper formats for data structures are given in
detail in [KRA4].

Two portions of the VWS2 world model are particularly important:  the description of the
tools currently in the milling machine, and the description of the geometry of the fixturing area.

For each tool in the machine, the following items (and others not being used) are in the
world model:  id, changer_slot, type, tool_type_id, cutting_depth, exposed_length,
cutting_diameter, shank_diameter, tip description, number of flutes, materials the tool can
cut, and material the tool is made of.  As long as a process plan uses only tools that are
already in the tool magazine of the milling machine, the tooling information in the world
model can be regarded as fixed, and once the model is set up, the user does not need to worry
about it.

The fixturing geometry information includes: obstacles, maximum run-offs in five
directions, and a safe_z_plane.  It is described in detail in [K&S2], Chapter VI, section 2.

The module requires a process plan, a design, and a workpiece description. Examples of
these have already been shown in Table 2 and Table 3.  An enhanced process plan (an
example is shown in Table 4) may be either input to the module or output from it.

The module makes heavy use of the "machine_ops" database, as described in section 3.

If verification is used, the "features" database must be set up.  This database includes
information about tests for parameters, names of feature verifiers, and names of reference
feature fit functions.
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III. WORKPIECE MODEL

        1.  INITIALIZATION

The workpiece model, construction of which is the core of the Data Execution module, is
initialized simply by copying the workpiece description of the workpiece named in the call
to execute_plan.  The module checks that the workpiece features are all features from the
design (possibly missing subfeatures).  The module prints an error message and halts if this
is not so.  The design and the material named in the workpiece description must match those
in the process plan.  If verification is on, the workpiece is verified.

        2.  CONSTRUCTION

As a step of the enhanced process plan is executed, any feature or subfeature produced by
the step is copied from the unenhanced design onto the workpiece model.  If the step is
making a primary feature (such as a pocket) which has a subfeature (such as a chamfer), the
subfeature is not copied to the model until the step which makes the subfeature is carried out.

        3.  USES

When execution is completed, the model may be saved as a description of the workpiece.
Also, the model is used to check that a step is reasonable to execute, as follows.

If a step makes a feature which has a reference feature, the model is checked to be sure the
reference feature already exists.  If a step makes a subfeature, the model is checked to be
sure the parent feature already exists.  In either case, if the required feature is not present
on the model, an error message is sent and the module quits work.

If a step makes a feature or subfeature that is already present on the model, once again an
error message is sent and the module quits work.

If the step is a counterbore, the hole being counterbored must already exist or an error
message is sent and the module quits work.
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IV. MACHINING

        1.  OVERVIEW

The approach to machining embodied in the VWS2 system is partly the result of evolution
and testing, and partly the application of the advice of expert machinists by the authors and
their predecessor, Mr.  Alton Quist of General Dynamics.  The authors consulted with expert
machinists Mr. Robert Lach of NBS, and Mr.  Ken Woodall of Texas Instruments.  Any
misapplication of their advice is due to the authors.  Mr.  Quist also used the advice of expert
machinists.

Most data for surface speeds and amount cut per tooth were extracted from published
handbooks, as noted below.  On the advice of both machinists, however, the published
values for pass depths and stepovers were not used.

        2.  VERTICAL PASS INCREMENTS

If a feature is fairly deep, it will be unsafe to try to machine the entire depth of the feature
at once.  Instead, the feature is machined in several passes, with a small amount removed by
each pass.  The depth which can be milled on each pass is dependent upon the size and type
of tool.  For drills, the pass depth is one tool diameter, whereas for end mills and ball-nosed
end mills the pass depth is half the tool diameter.  For fly cutters the pass depth is 0.01
inches or the cutting depth of the tool, whichever is smaller.  For face mills, the pass depth
is 0.1 inches or the cutting depth of the tool, whichever is smaller.

Vertical pass increments are used for the following types of machining: slot milling,
peripheral milling, drilling, face milling, and fly cutting.  The name of the parameter used
to indicate the vertical pass increment is "pass_depth".

        3.  TYPES OF METAL CUTTING

        3.1. Overview

This subsection discusses types of metal cutting used in the VWS2 system. There are other
types which may be performed by a milling machine but are not used in the system (reaming
and rough milling, for example).  These are not discussed here.

All but three of the machining operations specified in process plans require only a single
type of cutting.  Mill_pocket, mill_contour_pocket, and mill_side_contour, however, each
require three types of cutting (slot milling, peripheral milling, and finish milling) in most
circumstances.
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        3.2. Slot Milling

        3.2.1.  Introduction

Slot milling is a material removal operation performed with an end mill or a ball nosed end
mill in which the tool is cutting across the entire width of the tool.  In other words, the tool
is cutting a slot.

Figure 2 shows a cross-sectional view of a milling tool with four teeth which is cutting a
slot.  The figure describes the meaning of four basic milling terms: inches per tooth, feed
rate, spindle speed, and surface speed.  These four terms also apply to peripheral milling.

Figure  2.  Slot  Milling

This figure is a cross-sectional view of a milling tool with four teeth cutting a slot.  The
tool, shown in light gray, is moving from left to right and rotating clockwise.  The dark
gray patch is the material that will be removed by the rightmost tooth as it rotates one
more quarter turn.  The length of the flat side of that patch is the thickness of the chip
being removed (the "inches per tooth" parameter used in most machining handbooks).
The rate at which the tool moves from left to right is called the "feed rate".  The rate
of revolution of the tool (usually expressed in rpm) is the spindle speed.  The speed at
which the tip of a tooth is moving is called "surface speed", or simply the "speed".
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        3.2.2.  Ramping

When a slot milling operation is performed, the first step must necessarily be to get the tool
into the material at a certain depth.  Since end mills do not cut effectively with the center of
the tool, simply plunging the end mill into the material vertically is usually unsafe.  In soft
materials like aluminum, it will work, but the result is that the material under the center of
the tool is not cut, but simply pushed out of the way.  In order to solve this problem, the tool
is moved diagonally into the material, creating a ramp.  This allows more cutting to be done
with the side of the tool.  The maximum angle at which this ramping may be done depends
on the hardness of the material.  For the VWS2 system, the values used are 15 degrees for
aluminum and brass, and 5 degrees for steel and monel.  In some cases where it is
convenient, a smaller angle is used.

Ramping is used for the slot milling phase of making pockets, contour pockets, and side
contours.  Ramping is also used for all types of grooves (which are made by pure slot
milling).  In principle, ramping is not needed when the slot to be milled intersects the side
of the part, since in that case the tool does not need to move vertically into the material -- it
can move to the correct depth outside the part.  In practice, since changing the cutting
algorithms to suit the circumstances is difficult, ramping is used even if the feature passes
outside the part.

        3.3. Peripheral Milling

        3.3.1.  Introduction

Peripheral milling is a material removal operation performed with an end mill or a ball nosed
end mill in which the tool is cutting more material away from an existing edge.  The tool
follows a path around the periphery of the material being removed, hence the name
"peripheral milling".

        3.3.2.  Conventional vs. Climb Cutting

Peripheral milling may be done with either conventional or climb cutting. The distinction
between conventional cutting and climb cutting is illustrated in Figure 3 and Figure 4.

In climb cutting the material being cut is to the right of the path of the tool (for tools that
turn clockwise, which is the norm) and the teeth of the tool first contact the part at the wide
end of the chip being removed. Climb cutting may lead to tool chatter.  Climb cutting tends
to force the tool away from the material being cut.

In conventional cutting the material being cut is to the left of the path of the tool and the
teeth of the tool first contact the part at the narrow end of the chip being removed.
Conventional cutting tends to pull the tool into the material being cut.

The distinction between these two types of cutting also applies to chamfering and face
milling.
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        3.3.3.  Stepover

When a lot of material is to be removed by peripheral milling, a number of passes are made
with the tool.  Between each pass the tool is moved horizontally so that the same size bite
is taken by the tool on each pass. The horizontal distance between the tool paths on
successive passes is called the "stepover".  The size of the stepover is determined by the tool
size and the material being milled.  For aluminum, brass and steel, the stepover is half the
tool diameter.  For monel it is one fourth of the tool diameter.  Stepovers are shown in Figure
3 and Figure 4.

According to our expert machinists, a larger stepover is feasible with conventional cutting
than with climb cutting because of the possibility of chatter in climb cutting.  This led us to
structure our cutting algorithms so than only conventional peripheral milling is done.

Stepover applies to face milling as well as to peripheral milling.
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Figure  3.  Climb-Cut  Peripheral  Milling

This figure is a cross-sectional view of a milling tool with four teeth which is
doing climb-cut peripheral milling.  The tool, shown in light gray, is moving
from left to right and rotating clockwise.  The dark gray patch is the material
that will be removed by the rightmost tooth as it rotates one more quarter turn.
The double-headed arrow at the right shows the stepover of this cut.

Notice that the rightmost tooth is going to contact the material at the wide end
of the patch.  This is the hallmark of climb cutting and may lead to tool chatter.
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Figure  4.  Conventional  Peripheral  Milling

This figure is a cross-sectional view of a milling tool with four teeth which is
doing conventional peripheral milling.  The tool, shown in light gray,  moves
from left to right and rotates clockwise.  The dark gray patch is the material that
will be removed by the topmost tooth as it rotates one more quarter turn.  The
double-headed arrow at the right shows the stepover of this cut.

Notice that the topmost tooth is going to contact the material at the narrow end
of the patch.  This is the hallmark of conventional cutting.
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        3.4. Finish Milling

Finish milling is a type of peripheral milling in which an end mill is used to make one last
light cut at full depth on a pocket, contour pocket, or side contour.  The size of the stepover
is normally 0.01 inch in the VWS2 system.  Finish milling is normally preceded by slot
milling and peripheral milling.

Without finish milling, features made in several vertical passes often have horizontal lines
on the walls of the feature, one line at the bottom of each pass.

        3.5. Drilling

In drilling (sometimes called twist drilling by other authors), a drill with a conical tip cuts
a round hole in the material.  The actual cutting is done by the tip of the drill only.  In the
VWS2 system, all drills are assumed to have an included angle of 118 degrees at the tip, the
standard angle.

A pass depth is used in drilling.  The drill is retracted for a moment between passes to allow
cutting fluid to re-enter the hole.  Otherwise, the drill tip would not be properly lubricated.

        3.6. Tapping

In tapping, a tool with a screw thread on the outside is used to form threads on the inside of
a hole.  The tool is always called a tap, but it may work either by cutting material out of the
hole or by deforming the material inside the hole.  In the former case, the tool has grooves
on its outside parallel to the axis of the tool.  In the latter case there are no grooves and the
tool is called a "roll form tap".  The VWS2 system is set up for right-handed threads only.

On the Monarch vertical milling machine used in the VWS, tapping is performed by pushing
the tool lightly down into the hole with air pressure while turning the spindle clockwise.
The tool literally screws itself down into the hole.  When the tap reaches the desired depth,
the spindle reverses and screws the tool out of the hole.

        3.7. Countersinking

In a countersinking operation, a tool with a conical tip is inserted in the center of an existing
hole so that the edge of the hole is cut away. In the VWS2 system the included angle at the
tip of the countersink is always 82 degrees, since that is the included angle of the head of a
standard machine bolt.

        3.8. Chamfering

In a chamfering operation a sharp edge on a part is blunted by milling a little of it away.  In
the VWS2 system, the edge is always the 90 degree angle between a vertical surface and a
horizontal surface -- the edge between the walls of a pocket and the top of the part, for
example.  In the VWS2 system, a conical chamfer tool with a 90 degree included angle at
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the tip is passed around the edge to mill it flat at a 45 degree angle to both existing surfaces.
In principle, any other angle might be used, or the edge might be rounded rather than
flattened, but only the flat 45 degree chamfer has been implemented.

        3.9. Center Drilling

A center drilling operation is performed to make a small starting hole for a drill.  It is made
with a center drill, which is a rigid tool with a conical tip.  The tip angle of the center drill
should be smaller than the tip angle of the drill.  In the VWS these angles are 90 degrees and
118 degrees, respectively.

Since drills usually have a high length to diameter ratio, they are usually flexible and tend
to wander across the surface of a part before the cut starts.  When the entry point of a hole
is off center, the entire drill bends during cutting, and the axis of the hole is tilted from the
original axis of the drill.  The bending may break the drill.  Center drilling prevents this
wandering.  Thus, center drilling improves the accuracy of the location of a hole, helps keep
the axis of the hole aligned correctly, and helps prevent drill breakage.

        3.10. Counterboring

A counterboring operation is performed to finish up an existing hole.  An end mill is plunged
into the hole as deeply as desired (but not deeper than the existing hole).  As used in the
VWS2 system, the existing hole must be the same diameter as the end mill.  This is not a
requirement for counterboring in principle and is imposed to keep life simple for the VWS2
modeling system.

        3.11. Face Milling

Face milling is a bulk material removal operation which leaves a good finish.  Normally, the
entire top surface of a part will be removed in a face milling operation, but the only
requirement is that the material to be removed must be accessible from the side (since a face
mill will not cut vertically).  A single face milling cut may remove up to 0.1 inch of material.
Typical size for a face mill is one to three inches in diameter. A face mill will typically have
four to eight cutting teeth.

        3.12. Fly Cutting

Fly cutting is a surfacing operation.  It is performed to give a high quality surface finish or
to remove small irregularities, not to remove a lot of material.  Normally a fly cut will
remove 0.005 to 0.01 inch of material from the entire top surface of a part.  A fly cutter is a
tool with one tooth at the end of an arm.  The fly cutter used in the VWS has a four inch
diameter.
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        4.  SPEEDS AND FEED RATES

Spindle speeds for the different operations were calculated using data from the Machining
Data Handbook, [METC], published by Metcut Research Associates, Inc., along with advice
from experienced machinists.  A range of values for surface speed are given in the book,
depending on the hardness of the material being machined.  Since the hardness of the
material is not known in the system, the value used for surface speed was slightly lower than
the value given for the hardest material of the given type in the relevant hardness range.  The
spindle speed in revolutions per minute is then calculated as the surface speed (feet per
minute) times 12 (inches per foot) divided by the circumference (inches per revolution = pi
times cutter_diameter in inches).  The cutter_diameter is halved for chamfers, since cutting
is done starting at the middle of the tool, where the diameter is half the diameter of the tool.
The maximum spindle speed allowed is 5200 rpm.

Feed rates were calculated using data from the same sources.  The values for feed rates in
inches per tooth were chosen in the same way as the values for surface speed.  The feed rate
in inches per minute is then calculated as the feed (inches per tooth) times the number of
flutes (teeth per revolution) times the spindle speed (revolutions per minute).  For drills, end
mills, and chamfers, the feed was also multiplied by a scaling factor of the tool diameter in
inches.  This reduces the feed rate for smaller tools.  For taps, the feed rate is always 300,
since this is required by the canned cycle used to do the tapping.

Both spindle speeds and feed rates depend upon the type of material being milled, so in both
cases, the top-level function for calculating the values calls a subordinate function which is
appropriate for the given type of material.

        5.  ZERO FINDING

        5.1. Introduction

The origin of coordinates for machining is at the front left top corner of the workpiece.  This
is the same xy-location as in the coordinates for the design protocol, but the z-location in
the design protocol is at the bottom of the workpiece.  The setting of the xy-zero is done in
one step. Setting z-zero is a another, very different operation.

        5.2. Setting X-Zero and Y-Zero

        5.2.1.  Introduction

When a workpiece is placed in the vise on the milling machine, it is centered in the vise to
within plus or minus roughly an eighth of an inch. The probe is used to locate the part
exactly.  There are two geometric configurations that may be probed: corners and holes.  In
both cases the surface of the workpiece in the vicinity must be roughly flat.
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        5.2.2.  Probing a Corner

A corner to be probed must be a convex corner formed by the intersection of a plane parallel
to the xz-plane with a plane parallel to the yz-plane.  As shown in Figure 5a (page 34), which
is a top view of a part, this is your garden variety corner.  There are four types of corner that
may be formed this way, corresponding to the four corners of a block.  The corner types are
numbered 1, 2, 3, and 4.  On the figure there are three corners of type 1, two of type 2, one
of type 3, and one of type 4.  The corner being probed does not have to be an exterior corner
of the workpiece.  It may be a configuration appearing inside.  Any of the three type 1
corners on the figure could be probed.

To probe a corner, the user must give the approximate location and the type of corner.  When
a rectangular block is placed in the vise, the approximate location of any of the four corners
may be determined automatically.  At the lower left-hand corner, for example, the y-value
is the y-value of the fixed side of the vise (which would be at the top of Figure 5a) minus
the width of the part.  The x-value is the x-value of the middle of the vise minus half the
length of the part.  This is the corner that is usually probed.  The automatic process planner
uses this corner.

The method of probing is illustrated by the schematically drawn tool path at the lower left
corner of the part in Figure 5a.  The real tool path overlaps itself and would be hard to
understand.

The probe comes down vertically at a location offset towards the interior of the part from
the given approximate location of the corner until it hits the part.  This is only to find the
top of the part, not to set z-zero. Then the probe lifts up a little and moves outside the part,
comes down below the top of the part and approaches the part again slowly until it hits.
When it hits, the x-value of the contact point is recorded; that will be x-zero.  Next the probe
backs off, moves over to the other side of the corner, and approaches the part again slowly
until it hits.  When it hits, the y-value of the contact point is recorded; that will be y-zero.

If some corner other than the lower left-hand corner is probed, the values of x-zero and y-
zero are changed by an x-offset and a y-offset provided in the process plan.  Inserting these
offsets in the plan must be done manually and requires knowing the geometry of the part.

        5.2.3.  Probing a Hole

The hole to be probed should be circular.  The user must provide the approximate location
and diameter of the hole.

A simplified drawing of the hole probing routine is shown by the three lines crossing the
hole in Figure 5a.  The probe routine starts by finding the top of the part (that is why the
approximate diameter is needed - so that the system knows when the probe may be assumed
to be outside the hole); this is not shown on the figure.  Then the probe is inserted into the
hole at the given approximate center (where the vertical line on the left crosses the
horizontal line on the figure).  The probe moves back and forth to find y-values where it hits
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the side of the hole.  The average of these two values is used as a first approximation to the
y-value of the center of the hole.  The probe moves to this y-value and then moves back and
forth in the x-direction to find x-values where it hits the side of the hole.  The average of
these x-values is the x-value of the center of the hole, and their difference is the first
approximation to the diameter. Finally the probe moves to the center of the hole and then
moves back and forth in the y-direction to find two more y-values.  The average of these
new y-values is the final y-value of the center of the hole and their difference is a second
approximation to the diameter.  The average of the two approximations to the diameter is
returned as the diameter (but this value is not being used for anything).

Offsets may be used with hole probing exactly as with corner probing.
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b. setting the W-axis

1. Head set at W= -9.0 for setting tool length offsets.
2. Head moved 1.5 inches closer to workpiece.
3. Head moved up by thickness of workpiece.
4. Head moved down three inches for milling in pallet area.

1

2
3

4

 top of workpiece

bottom of vise jaws

top of pallet area
3.0

workpiece thickness

Figure  5.  Setting  Zero
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a. setting x-zero and y-zero
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        5.3. Setting Z-Zero

        5.3.1.  W-axis Setting

The entire head of the milling machine moves vertically with respect to the table of the
machine.  Setting z-zero is complicated by location of the head of the machine (the W-axis
setting).  There is no absolute zero in the vertical direction on the milling machine which
can be used by the machine tool controller.  The quill of the machine (the large metal
cylinder that holds the spindle) has an absolute zero, and the position of the quill is what is
controlled by changing a z-value, but the quill’s motion is relative to the current position of
the head of the machine.  If the W-axis is set at -8.0 and a program is run that expects the
W-axis to be set at -9.5, all the motions of the tools will be 1.5 inches above where they are
expected to be.

A second complicating factor is that tool offsets are provided to compensate for the fact that
different tools are different lengths. The tool offsets are set with the W-axis in a given
position, and if the location of the W-axis is changed, the tool offsets must be changed.

In the VWS, tool offsets are taken where W=-9.0 and are measured to the bottom of the vise
jaws, where the workpiece sits.  However, to be sure that the tools will be able to go through
the bottom of the workpiece without exceeding the limits of quill travel, during cutting the
W-axis is positioned 1.5 inches closer to the top of the workpiece.  Thus the W-axis would
be set at W=-10.5 if the top of the workpiece were at the bottom of the vise jaws.  This also
means that all tool length offsets must be adjusted by 1.5 inches.

To compensate for the thickness of the workpiece, since NC-programs expect z=0 to be at
the top of the workpiece, the head of the machine is moved upwards along the W-axis by
the design thickness of the workpiece.  If the workpiece is thicker than the design thickness,
it will be face milled down to the correct height before any other milling is done.  During
this face milling, z-values will be positive.

If machining is to be done in the pallet area, the head of the machine is moved downwards
3.0 inches along the W-axis, since the difference in height between the bottom of the vise
jaws and the top of the pallet holder is 3.0 inches.

The three adjustments of the W-axis and the one adjustment of the tool length offset just
described suffice to set z-zero when z-zero is to be set with respect to the fixture.  Figure 5b
shows a side view of the pallet and the vise along with four positions of the spindle as the
head of the machine is moved.
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        5.3.2.  Setting Z-zero from the Top of the Part

In some cases it will be desirable to set z-zero at the top of the part or some distance offset
from the top of the part.  To do this the probe is moved to an xy-location specified by the
user and brought down slowly until it hits the part.  Then the z-value of the quill is recorded.
The difference between this z-value and the corresponding z-value that was recorded when
tool offsets were measured (plus any additional offset the user may have specified) is used
to adjust all the tool length offsets.

        6.  TOOL CHANGING
All tool changing is done at a fixed xy location on the milling machine that is known to be
free of obstacles.  If tools were changed near a part being milled, there would be a risk of
knocking into the part or fixturing. The height of the machine head above the table is always
set to be sufficient to allow for changing the longest tools at the preset xy location.

When a tool change is required, the x and y values of the current origin are temporarily
cancelled, so that absolute coordinates are in effect. The spindle is retracted, and flood
coolant is turned off.  The spindle is moved to the tool changing location, and the tool is
changed.  The Monarch VMC-75 vertical milling center holds 40 tools in its changer, and
any of these may be used.  After the new tool is inserted, the origin is restored to its previous
location.  For any of the 15 metal cutting operations the flood coolant is turned back on.  For
the three zero-setting operations it is left off.  Also for the metal cutting operations, the tool
change command may include a move to a new xy location after the change is completed.
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V. AUTOMATIC NC-CODING

        1.  OVERVIEW

In the VWS2 system numerical control code (NC-code) is generated automatically by the
Data Execution Module.  The code that is generated is executable by the GE2000 machine
tool controller that controls the Monarch VMC-75 Vertical Machining Center.  This code is
not a standard language, but it is very similar to many other NC-code languages.

The description of NC-code given in section 2 of this chapter is intended to give the reader
an understanding of basic concepts and how they are applied in the VWS2 system.  For
details of the exact meaning of the codes, refer to [MONA].

        2.  NC-CODE

        2.1. Introduction

NC-code is a series of lines of alphanumeric characters.  The lines are interpreted line-by-
line by the controller.  On each line there are one or more entries separated by spaces.  Each
entry is usually a letter followed by a number, possibly with a plus or minus sign in between.
In some cases (as on the second line in the example below), the number may be replaced by
an expression in parentheses.  This expression will be evaluated at the appropriate time by
the controller, and the value will be a number.

The order of the entries on a line should be according to the following alphabetical
sequence:  n g x y r z w f s t d m.  There may be two "g" entries on a line and three "m"
entries, but there should not be more than one of any other type of entry.

The meanings of NC-codes used in the VWS2 system are given in Table 6.  The table covers
all NC-codes used except for the codes used on the first and last lines of a program, which
are unique.  There are many other NC-codes available for use on the Monarch which are not
used in the VWS2 system.

The controller is smart enough to execute the codes on a single line in a sensible order,
which may be different from the order on the line. However, all of one line is executed
before the controller proceeds to the next line.

The controller keeps track of the current position of the tip of the tool which is in the spindle.
Thus, to control the tool, it is sufficient to tell the controller where to move the tip of the
tool next.
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Table  6.  Numerical  Control  Codes
  CODE                                WHAT  IT  MEANS                            WHERE USED

d
f
goto
gsub
g0
g1
g2

g3
g53
g56
g81
g82

g83
g84
g90

if
m3
m5
m6
m8
m9
m28
m67
m72
m950
n
p

r

s
t
w
x
y
z
!

Use the tool offset value of tool in the following slot.
Set the feed rate to the following value.
Go to the line number indicated.
Run the following subroutine.
Ignore feed rate and move at traverse speed (fast).
Move in a straight line to the specified point.
Make a clockwise arc of less than a semicircle to the
point given by x and y, using the radius given by r.
If z-value is given, move linearly in z, making a helix.
Like g2, except counterclockwise.
Cancel the x and y zero settings.
Set x and y zero.
Traverse to r-plane, feed to z-value, retract.
Traverse to r-plane, feed to z-value, hesitate, retract.

Traverse to r-plane, peck feed to z-value, retract.
Run an air-pressure driven tapping cycle.
Interpret x, y, and z values as coordinates measured from
the current origin.
Check the truth of an expression. Do something if true
Start the spindle clockwise
Stop the spindle.
Retract the spindle.
Turn flood coolant on.
Turn flood coolant off.
Unknown - not documented.
Unknown - not documented
Lock the quill against motion in the z-direction.
Set the z-axis offset parameter.
Starts line number, has no effect except as goto label.
Denotes a parameter.  Used in a variety of ways.

If used with g2 or g3, the following number is a radius.
Otherwise, following number is a z-value above part.
Set the spindle speed to the following number.
Change to the tool whose slot number follows.
The following number is a w-axis value.
The following number is an x-value.
The following number is a y-value.
The following number is a z-value.
What follows on this line is only a comment.

many functions
many functions
depth_loop, version 2
3 set0’s
many functions
many functions
many functions

many functions
many functions
change_tool, 3 set0’s
center_drill_nc
cbore_hole_nc
csink_hole_nc
hole_nc
tap_hole_nc
many functions

depth_loop, version 2
change_tool
close_nc, 3 set0’s
many functions
many functions
many functions
2 set0’s
2 set0’s
pocket_chunk
close_nc, init_nc, set0z
print_nc_line
depth_loop, version 2
3 set0’s
many functions

many functions
change_tool
init_nc, close_nc
many functions
many functions
many functions
many functions
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        2.2. An Example

To understand how NC-code is interpreted, it is useful to look at an example.  Here are seven
typical lines taken from a program written by the VWS2 system.

      n0025 g90 g0 s3437 t2 d2 m3 m6
      n0026 g56 g90 x(p66) y(p67)
      n0027 m8
      n0028 x+0.3816 y-0.26
      n0029 g90 g0 z+0.1
      n0030 g1 z+0.0 f5
      n0031 g2 x+0.0473 y+0.2094 r+0.3538 z-0.0121

By referring to Table 6, we can interpret the seven lines of code as follows.

To begin with, the first entry on each line is simply a line number.  The alphabetic part of
the line number is "n", and the numeric parts are in numerical order.

The entries on line n0025 mean:
      g90 = use absolute positioning with respect to the current origin
      g0  = move at traverse rate when a move is indicated
      s3437 = set the spindle speed to 3437 rpm
      t2 = put the tool in changer slot 2 into the spindle
      d2 = use the tool offset value stored for the tool in slot 2
      m3 = start the spindle clockwise at the new spindle speed
      m6 = retract the spindle

In executing this line, the controller retracts the spindle first, then stops it if it is turning
(even though there is no m5 command), finds tool 2, puts it into the spindle, and restarts the
spindle at 3437 rpm.  Notice that the g90 and g0 commands have no effect on this line.
These commands continue in effect until countermanded by some other g code and may have
an effect on following lines.

The entries on line n0026 mean:
      g56 = Set the x and y values of the origin at the values given on this line
                (in absolute coordinates)
      g90 = use absolute positioning with respect to the current origin
      x(p66) = the x value is the value of parameter 66 (which must have been set earlier)
      y(p67) = the y value is the value of parameter 67 (which must have been set earlier)

The machine does not move when this line is executed, it just changes internal variables.

The entry on line n0027 means:
      m8 = turn on flood coolant
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The entries on line n0028 mean:
      x+0.3816 = move to where x equals 0.3816
      y-0.26 = move to where y equals -0.26

The spindle moves in a straight line at traverse speed (as set on line n0025) to the point
whose x and y values are given on this line.  The x and y values are measured as coordinates
with respect to the new origin set on line n0026.

The entries on line n0029 mean:
      g90 = use absolute positioning with respect to the current origin
      g0  = move at traverse rate
      z+0.1 = move to where z equals 0.1

Neither the g90 nor the g0 is really essential on this line, since both are already in force, but
they do no harm, either.  There are many instances in the VWS2 system of reiterating g
codes that are already in force.  This programming practice is recommended in the
programming manual [MONA]. Codes other than g codes are not reiterated.

The entries on line n0030 mean:
      g1 = move in a straight line at the current feed rate
      z+0.0 = move to where z equals 0.0
      f5 = set the feed rate to 5 inches per minute

The feed rate will be reset before the move starts.

The entries on line n0031 mean:
      g2 = make a clockwise arc in the xy-plane
      x+0.0473 = the arc should end where x equals 0.0473
      y+0.2094 = the arc should end where y equals 0.2094
      r+0.3538 = the radius of the arc should be 0.3538
      z-0.0121 = at the same time, move the tool to where z equals -0.0121

The z move is linear, so that the actual tool path is a portion of a helix. The feed rate which
was set on the preceding line is still in effect, as is the g90 command on the line before that.
Two clockwise arcs are possible. The one that is less than a semicircle is used.  If the given
radius is too small, the controller will come to a halt and post an error message.
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        2.3. First and Last Lines of a Program

The first line of an NC program always has the following format:

      n0001 (ID,PROG,lok1nc,locking clevis first cut,1)

The term "lok1nc" on the above line is the program identifier, and may be replaced by any
other sequence of not more than six alphanumeric characters.  The term "locking clevis first
cut" on the above line is a brief description of the program and may be replaced by any other
sequence of not more than 30 alphanumeric characters and spaces.  No other spaces are
allowed within the parentheses.

The last line always has the format:

      n0160 (END,PROG)

where "0160" may be replaced by any other four digits.

        3.  GENERAL APPROACH TO CODE-WRITING

        3.1. Introduction

As noted earlier, if the NC-code writing option of the Data Execution module is on, a block
of code is written for each step in the enhanced process plan.  Since there are twenty-one
different work elements in the VWS2 system, and two of them (face_mill and fly_cut) share
an NC-coding function, there are twenty coding functions which may be called.  Five of
these (init_nc, close_nc, and the three zero-setting functions) do not write code for cutting
metal; the other 15 do.

The 15 coders for metal cutting always check first if a tool change is required, and make a
change if needed.  In order to do this, the module keeps track at all times of which tool is in
the spindle.  The module also keeps track of the current spindle speed, and changes it only
when necessary.  Earlier versions of the system kept track of other items, as well, but the
benefit of keeping track (in shorter code and reduced machining time) was slight and not
worth the cost of complicating the NC-coding system.

At the end of a cut, the tool is always left down in the material, and it is left to the next
operation to withdraw the tool.

The NC-code is written as pseudocode by the system and stored in reverse order from the
way it will ultimately appear in the file.  At the end of the module’s operation, the
pseudocode is printed out as real NC-code. Also at the end of the module’s operation, if the
drawing option is on, a copy of the pseudocode (in the correct order) is given to the graphics
system in case the user wants to see the tool path.  If the module aborts during operation, as
it may if some feature or operation fails verification, the pseudocode is scrapped, and
nothing is printed out.
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        3.2. Pseudocode and Print Routine

The use of pseudocode was adopted principally to simplify the job of writing NC-coding
functions, but it has proved to have several other advantages.  The biggest side advantage is
that pseudocode is easily used by the drawing system to draw tool paths.  This is because its
format is native to LISP and because conceptually separate items (such as the name of a
coordinate and its value) are still separate.  Drawing from real code would require that a
parsing routine be written to separate groups of characters into conceptually distinct bunches.

An earlier version of the system wrote NC-code line-by-line to a file, opening and closing a
port repeatedly.  The system could not handle the frequent opening and closing of the port
correctly, and was dropping lines of code.  The use of pseudocode cleared the problem up
since the port is opened only once and closed once.

Pseudocode is stored in the LISP environment as a list of sublists.  Each sublist represents
one line of code.  The pseudocode differs from the final code in the following respects (in
addition to the obvious difference of the pseudocode being in the environment only and the
real code being in a file only).

A.  In pseudocode floating point numbers are kept with all the significant figures
LISP provides (17 or so).  In real code, floating point numbers are rounded off to
4 decimal places, and terminal zeros are suppressed in the second through fourth
places.

B.  In pseudocode some numbers may be either fixed or floating point and may or
may not have a sign; namely numbers that represent values of r, x, y, or z.  Such
numbers are converted to floating point numbers by the print routine and are
always printed with a sign.

C.  In pseudocode there are no line numbers; they are not needed since lists are
inherently ordered.  Line numbers appear in the real code.  The numbers are
generated by the print routine, which uses a counter to keep track.  The absence
of line numbers in pseudocode is a big help when copies of several lines are to be
made, as when repeating code at several different depths.

D.  Pseudocode may contain strings.  Real code contains no strings. Strings may be
used to hold bits of code that will be welded together by the print routine.

E.  The print routine automatically deletes spaces following some characters in the
pseudocode, unless instructed otherwise.

F.  Pseudocode may contain three terms which are not printed, but are interpreted
specially by the print routine.  These are:

Term                                                   Interpretation

    nil Do not print anything.  Using nil simplifies the writing of NC-coding functions.
    sign  Print the sign of the following number.
    no_space  Do not put any space between the previous and following items.
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The pseudocode that results in the seven lines of code given in the example of section 2.2. is
as follows:

      (g2 x 0.04729792843330796 y 0.2093696684367282 r 0.35375 z -0.0121017118049899)
      (g1 z 0 f 5)
      (g90 g0 z 0.1)
      (x 0.3816198612624016 y -0.26)
      (m8)
      (g56 g90 "x(p66)" "y(p67)")
      (g90 g0 s 3437 t 2 d 2 m3 m6)

An example of line made up in bits is the following:

      ("p66=(p97" sign 0.0 no_space ")" "p67=(p98" sign 0.0 no_space ")")

If this happens to be line 18, it prints out as follows:

      n0018 p66=(p97+0.0) p67=(p98+0.0)

        3.3. Comments

Whenever a tool change occurs, a comment line is put into the NC-code, describing the new
tool.  Most of the 15 metal cutters insert a comment describing the operation or the feature
being machined.  The comment may appear on a separate line, or at the end of an effective
line.  Comments are denoted by an exclamation mark (!), and anything following the mark on
a line of code is interpreted as a comment, no matter how it would ordinarily be interpreted.

        3.4. Machine Capabilities

        3.4.1.  Introduction

The NC-codes selected to be used in the VWS2 system were generally ones which stand for
capabilities which are common to most numerically controlled milling machines.  This was
done so that the system could be adapted easily to other machines.  The system has been
adapted for a different milling machine at the University of Maryland, and parts have been
cut using NC-code written by the adapted system.

By not using any of the zero-setting routines, and using version 1 of the depth_loop
function, only the common capabilities listed in the next subsection are needed, except that
init_nc, close_nc, and change_tool all would have to be rewritten for a milling machine
which does not have parameter capability, since those three functions use parameters.



VWS Data Execution

- 44 -

        3.4.2.  Common Capabilities

The following capabilities used in the VWS2 system we believe to be common to most
numerically controlled machine tools.They are given here in the order they appear in Table 6.

1.  use a tool offset value
2.  set feed rate
3.  move at traverse speed
4.  mill in a straight line in three dimensions
5.  make a circular arc in two dimensions or a helical arc in three
6.  run canned cycles like those represented by g81, g82, g83, and g84.
7.  interpret x, y, and z values as coordinates
     (the alternative is to interpret x, y, and z values as distances from the current location).
8.  start and stop the spindle
9.  retract the spindle
10. turn coolant on and off
11. lock the quill
12. use NC-code with line numbers in it
13. set spindle speed
14. use radii in making arcs and traverse to a given z in canned cycles
15. change a tool
16. move the w-axis
17. use NC-code with comments in it

The air pressure driven tapping cycle used to implement the g84 code on the Monarch VMC-
75 is not a common capability, but a canned tapping cycle of some sort is common and could
be substituted.

        3.4.3.  Less Common Capabilities

The least common capability of a milling machine used in the VWS2 system is the
Monarch’s probing capability.  This capability is employed in the three zero-setting
operations.  Probing is used in the system principally so that we can deal with slight
variations in the location of parts which have been loaded automatically by a robot into the
vise.  The g53, g56, m27, m28, and m950 codes and subroutine calls are used only in
connection with zero-setting.

A second less common capability is the use of parameters and the evaluation of expressions
including parameters.  Parameters are used in the three zero-setting operations, init_nc,
close_nc, change_tool, and the second version of depth_loop.

The last two uncommon capabilities are used only in the second version of depth_loop,
namely jumping to some other line of code than the next one (a "goto" statement) and using
the conditional "if" to trigger the jump.  The depth_loop function writes all the NC-code
needed to repeat a series of lines of code at increasing depths.  The first version of
depth_loop prints new lines at each new depth.  The second version reuses the lines by using
a parameter to represent depth, using "if" and "goto" to loop back as many times as
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necessary, and increasing the value of the depth parameter on each loop.  The use of the
second version of depth_loop may save several hundred lines in a1000 line program,
depending upon the nature of the cuts, of course.

        4.  SIMPLE ALGORITHMS

        4.1. Drilling

The drill is located over the center of the hole, brought down quickly to 0.1 inch above the
material, and fed vertically downwards to make the hole. During feeding the drill is retracted
for a moment and then fed back into the hole each time it goes another pass depth deeper.
This is called pecking.  Once in the right xy location, the entire algorithm is carried out by
a g83 canned cycle on one line of NC-code.

        4.2. Tapping

The tap is located over the center of the hole, brought down quickly to 0.1 inch above the
material, and pushed vertically downwards by air pressure. The tap screws itself into the
material to the given depth.  The spindle reverses and unscrews the tap from the hole.  Once
in the right xy location, the entire algorithm is carried out by a g84 canned cycle on one line
of NC-code.

        4.3. Countersinking

The countersink is located over the center of the hole, brought down quickly to 0.1 inch
above the material, and fed vertically downwards to the necessary depth.  At the final depth
the tool hesitates (dwells) for half a second to make a clean cut, and then it is withdrawn.
Once in the right xy location, the entire algorithm is carried out by a g82 canned cycle on
one line of NC-code.

        4.4. Milling a Straight_Groove

A straight groove is milled by ramping the tool back and forth into the material.  On each
ramp the tool is angled downwards at the minimum of:

A. the maximum ramping angle,
B. an angle that will make the vertical depth of the cut at the far end of the groove be

one pass_depth,
C. an angle that will reach the bottom of the groove at the far end.
After the last ramp is done, the tool is returned to the starting point at constant depth

to complete the work.

If the length of the tool_path for a straight_groove is less than 0.1 inches, then the groove
is too short to ramp.  In this case, an error message is issued, and the groove is milled by
plunging at a low feed rate into the material at one end of the groove and milling to the other
end. The experienced user, having been notified, can then decide whether or not it is safe to
use this code.
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        4.5. Milling a Groove

The set of corners for the groove is converted into a set of contour corners, and the contour
groove milling algorithm is used.

        4.6. Chamfering

A chamfer tool is moved on a path that is a rectangle with (possibly) rounded corners.
Recall that a chamfering operation breaks an edge where a vertical wall meets a horizontal
surface of the part.  The tool meets the vertical wall at exactly half a tool radius from the
axis of the tool and cuts with only the upper half of the tool.

        4.7. Center Drilling

A center drill is brought to the correct xy location, brought down quickly to 0.1 inch above
the material, and fed vertically downwards to the necessary depth.  Once in the right xy
location, the entire algorithm is carried out by a g81 canned cycle on one line of NC-code.

        4.8. Counterboring

The counterboring algorithm is identical to the countersinking algorithm, except that the
dwell time is the amount of time it takes for the spindle to make two full turns, or a quarter
of a second, whichever is greater.

        5.  NON-TRIVIAL BUT EASY ALGORITHMS

        5.1. Face Milling

The face milling algorithm mills away a rectangular area of the top of the part to a fixed
depth.  Normally the rectangle includes the whole top surface of the part, but this is not
required.

If the rectangle is longer in the x-direction than the y-direction, the face mill is fed back and
forth across the part parallel to the x-axis, removing a strip of material one stepover wide
on each horizontal move. After each move parallel to the x-axis, the tool is rapidly moved
one stepover in the y-direction while it is outside the rectangle.  The last move parallel to
the x-axis is adjusted so that the face mill extends beyond the rectangle by 0.1 inch in the
positive y-direction (less if the last strip is nearly as wide as the tool).

If the total depth to be milled is greater than the pass depth, the same moves are repeated
until the final depth is reached.

If the rectangle is longer in the y-direction than the x-direction, the back and forth motion
is parallel to the y-axis and the stepover is made in the x-direction.

The back and forth motion results in an alternation between conventional cutting and climb
cutting.  This has not proved to be a problem.
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        5.2. Fly Cutting

The fly cutting algorithm is identical to the face milling algorithm.  In fact, the same NC-
coding function is used for both.  Of course speeds, feed rates, pass depths, and stepovers
are different for the two operations, but these are arguments to the NC-coding function.

        6. SOPHISTICATED ALGORITHMS

        6.1. Pocket Milling

        6.1.1.  Introduction

The normal pocket algorithm is non-trivial but easy.  However, the overall algorithm is
complicated by the variety of situations it is designed to handle.  The complicating factors
are:  very small pockets, small pockets, and making the initial slot.  Figure 6 shows the top
view of the cutter path for the normal situation and the three complications in milling a
pocket.

        6.1.2.  Normal Pocket Algorithm

As shown in Figure 6(A), the normal situation is that a slot is milled across the center of the
pocket to full depth.  Then several passes are made at successively increasing depths to mill
away the bulk of the material inside the pocket to within 0.01 inch of the final sides of the
pocket.  Finally, a finish pass around the perimeter of the pocket is done at the full depth to
even up the sides of the pocket.

The bulk removal passes are identical except for the depth of the cut.  On each pass the tool
is inserted in the initial slot, moved downwards and to the right to start the cut, and then
passed around the expanding periphery of uncut material in a clockwise direction, moving
downwards and to the right again after each full circuit.  On the first few circuits, the tool
path is rectangular, but as milling proceeds, the corners of the rectangle are rounded
concentrically with the corners of the pocket.

        6.1.3.  Very Small Pockets

A very small pocket is one whose length and width are both less than 0.02 inch greater than
the diameter of the end mill being used to make the pocket.  A very small pocket is made by
plunging the end mill straight into the material to full depth, and then making a finish cut
(unless the tool is the same size as the pocket, in which case no finish cut is needed).  This
is shown in Figure 6(B).  Because plunge cutting may be unsafe, a message is sent to the
user if a plunge cut is to be made.
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        6.1.4.  Small Pockets

If both the length and the width of the pocket are smaller than 1.5 times the tool diameter
plus 0.02 inch, so that there is not enough room to mill a slot, but the pocket is not very small
(as defined above), bulk material removal is accomplished by generating a set of contour
corners, and a contour groove is milled 0.01 inch (or less, if the pocket is very narrow) inside
in final walls.  Then a finish pass is made.  This is shown in Figure 6(C).  Because the pocket
is small, making a contour groove will not leave an island inside the pocket.

        6.1.5.  Making the Initial Slot

In the normal situation, the length of the initial slot is the difference between the length and
width of the pocket.  If the pocket is longer in the x-direction, the slot is horizontal.  If it is
longer in the y-direction, the slot is vertical.  If the normal size slot is long enough (more
than one tool radius long), it is made by ramping down into it.

If the pocket is square, or close to it, the normal slot length will be too small for ramping.
In this case, as shown in Figure 6(D), the ends of the slot are extended to near the walls of the
pocket to allow room for ramping.  This will provide a suitable line unless the pocket is small.
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Figure  6.  Pocket  Cutting  Tool  Paths

(A)

(B)

(D)

(C)

In this figure tool paths are shown for the four variations of the pocket making algorithm.
Heavy outlines show the pockets.  Light lines show the tool paths.
The distance between the outermost pair of tool path lines, 0.01, is exaggerated in each case.
(A) the normal situation. First a slot is made, then material removed, then a finish cut made.
(B) a very small pocket.  First a hole is plunge cut, then a finish cut made.
(C) a small pocket.  First a contour groove is made and then a finish cut made.
(D) length and width are almost equal. The initial slot goes across the pocket, rest is like A.
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        6.2. Text Milling

Text milling is accomplished by milling each character separately.  The first character is
milled at the starting location of the text.  The routine which generates NC-code for one
character also returns the x-value of the location where the next character should start.

The VWS2 methods for dealing with text are described in detail in sections 2.15.7 and 2.16
of chapter II of the design protocol paper [K&J2].

Each character in each font has a template for making the character stored in the fonts
database.  The template for making a character consists of two lists: nc_points and nc_path.
In the plain font the letter R, for example, has the nc_points and nc_path shown in Figure 7.

Each entry on the nc_points list (except the last one) is a pair of numbers which represent
the x and y coordinates of a point on the character.  These coordinates are scaled according
to the height of the text and are translated to the proper xy-location.

The last entry on the nc_points list is the point to go to when the character is finished.  The
x-value of the last point is always larger than the x-value of the lower right-hand corner of
an imaginary parallelogram that just fits around the character by an amount which is the
spacing for the particular font.  The y-value of the last entry is always zero.

Each entry on the nc_path is a pair in which the first item represents a type of path to mill
to the next point, and the second item tells which point on the nc_points list is the next point.

The letter codes found on the nc_path list mean the following:
      s = straight line
      w = clockwise arc
      ccw = counterclockwise arc
      j = jump without milling

The use of nc_points and nc_path to mill the letter R is explained in Figure 7.

If text is deep, it will be cut in several passes.

The initial entry of the tool into a text character is by plunge cutting. While this is not ideal,
since text is almost always quite shallow, entry by plunge cutting is almost always safe.

For most fonts, the radius used for making arcs is of such a size that arcs and straight lines
join together smoothly.  However, one of the options of the font maker is to flatten out arcs
by making the radius larger.  The "angular" font uses this option.  No change in any other
part of the system is required.
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Figure  7.  Text  Tool  Path

(0.0  0.5)

(0.0  0.0)

(0.25  0.5)

(0.0  1.0)

(0.5  1.0)

(0.667  0.833)

(0.667  0.667)

(0.5  0.5)

(0.667  0.0)

This figure shows the tool path for milling the letter R in plain font. The outline of the R is shown
with a heavy black line.  The tool path is shown with a heavy grey line.

Two sets of data are needed. Nc_points is a list of pairs of numbers representing coordinates:
 ((0 0) (0 0.5) (0 1) (0.5 1) (0.667 0.833) (0.667 0.667) (0.5 0.5) (0.25 0.5) (0.667 0) (1 0))

Nc_path is a list of pairs.  The first element of each pair is a letter code, and the second element is
an integer standing for an element of the nc_points:
      ((s 3) (s 4) (w 5) (s 6) (w 7) (s 2) (j 8) (s 9)).

The machining of a character always starts at the first point on the nc_points list.  Thus,  milling
begins by moving to (0 0) and inserting the tool. Then the nc_path is followed in order:
   (s 3) = mill straight to point 3 at (0  1).
   (s 4) = mill straight to point 4 at (0.5  1).
   (w 5) = mill in a clockwise arc to point 5 at (0.667  0.833).
   (s 6) = mill straight to point 6 at (0.667  0.667).
   (w 7) = mill in a clockwise arc to point 7 at (0.5  0.5).
   (s 2) = mill straight to point 2 at (0  0.5).
   (j 8) =  pull the tool up, jump to point 8 at (0.25  0.5), and reinsert the tool.
   (s 9) = mill straight to point 9 at (0.667  0).
The last point on the nc_points list, (1  0), shows where the next character should start.

For NC-coding, the nc_points list is scaled and translated appropriately before being used.
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        6.3. Milling a Contour Groove

A contour groove is specified by a set of corners.  The notion of a set of contour corners (a
contour outline) is discussed in detail in the design protocol paper [K&J2], Chapter II,
section 2.15.8.  Included in the description of each corner are its starting and ending points,
the radius of the arc, and the angle it subtends.  If the first corner has a nil radius, then the
groove is open.  If the radius for the first corner has a value, then the groove is closed, and
can be milled by ramping downward in circuits around the groove.  If the groove is open,
then the groove must be milled back and forth between the ends.

A separate routine is used for each type of contour groove.  For a closed groove, the ramp
angle is set according to the type of material (5 degrees for steel and monel, 15 degrees for
aluminum and brass).  The tool, which is an end mill for a flat-bottomed groove and a ball-
nosed-end-mill for a round-bottomed groove, is ramped into the material at the ramp angle
along the contour outline until (i) one pass depth is reached, or (ii) the bottom of the cut is
reached, or (iii) a complete circuit around the outline is made.  In case (i), the tool path is
levelled off for the rest of the circuit.  In case (ii), the path is levelled and one more complete
circuit is made to the place where levelling started.

For an open groove, the method is slightly different.  The ramping depth is found as the
depth, the pass_depth, or the length of the groove times the tangent of the maximum ramping
angle, whichever is smallest.  The change in depth for each segment is then the fraction of
the groove length covered by the segment times the ramping depth.  This is repeated, with
NC code written for each segment, until the end of the groove is reached.  The groove is then
milled in the reverse direction at a constant depth.  This process is repeated as many times
as necessary to reach the proper depth.

        6.4. Milling a Contour Pocket

The algorithm for milling a contour pocket is shown in Figure 8.  The algorithm is described
on the figure, as well.  The initial cut is made by the routine described in section 6.3 for
ramping into closed contour grooves.  The final cut is made by a simpler routine which
inserts the tool to full depth first and then follows the contour.

A second version of this algorithm, written earlier, replaces the middle portion of the
algorithm (bulk material removal) with a zigzag pattern. This second algorithm is more
difficult.  It was discarded because it alternates between conventional cutting on the zig and
climb cutting on the zag.  Using the algorithm would have required that a much smaller
stepover be used for steel to avoid chatter during climb cutting.  This would have lengthened
machining time considerably.

        6.5. Milling a Side Contour

The algorithm for milling a side contour is shown in Figure 9.  The algorithm is described
on the figure, as well.  As with a contour pocket, the initial cut is made by the routine
described in section 6.3 for ramping into closed contour grooves, and the final cut is made
by the simpler routine.
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Figure  8.  Contour  Pocket  Tool  Path

This tool path drawing, which is a bit image taken from the screen, shows the tool path used to
cut a particular contour pocket.  The heavy line marks the outline of the contour pocket.   A light
solid line is drawn when the tool is cutting.  A light dotted line is drawn when the tool is in the
air above the part.

The cut starts at the top of the picture. The inner contour path is followed first.  It is made by
ramping the tool down into the part to full depth while following the path.

The horizontal cuts are made next to remove the material on the inside of the contour.  Each cut
spans the inner contour and is made from right to left so that conventional milling is done.  The
order in which the cuts are made is from top to bottom.  After each cut the tool is withdrawn,
moved to the beginning of the next cut and inserted rapidly.  Note that there are no horizontal
cuts in the neck of the figure.  This is because cuts whose length is less than a tool radius have
been suppressed; the material they would cut has already been removed.

If the pocket is deep, the entire pattern of horizontal cuts is repeated several times at increasing
depths to reach the final depth.

The last step is to make a finish pass at full depth around the outer contour outline.
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This tool path drawing, which is a bit image taken from the screen, shows the tool path used to
cut a particular side contour.  The rectangle is the part, and the heavy line marks the outline of
the side contour.  A light solid line is is drawn when the tool is cutting.  A light dotted line is
drawn when the tool is in the air above the part.

The cut starts at the left of the picture, slightly below the top.  The outer contour path is followed
first.  It is made by ramping the tool down into the part to full depth while following the contour
path.

The horizontal cuts are made next to remove the material outside the outer contour.  Each cut is
made from right to left so that conventional milling is done.  The order in which the cuts are
made is from top to bottom.  After each cut the tool is withdrawn, moved to the beginning of
the next cut, and inserted rapidly.  At the right, the tool is inserted outside the part by a tool
radius plus 0.1 inch.  At the left the tool is withdrawn just at the edge of the part.  Cuts whose
length inside the material is less than a tool radius have been suppressed; the material they
would cut has already been removed.  If the side contour is deep, the entire pattern of horizontal
cuts is repeated several times at increasing depths to reach the final depth.

The last step is to make a finish pass at full depth around the inner contour outline.

Figure  9.  Side  Contour  Tool  Path
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VI. DATA EXECUTION MODULE SOFTWARE

        1.  INTRODUCTION

The software for the Data Execution module is all written in Franz Lisp, as is nearly all the
rest of the VWS2 software.  It is compilable, but is normally run interpreted rather than
compiled since changes have been frequent, and, if bugs appear they are much easier to find
and eliminate in uncompiled code.

In addition to the authors, portions of the code were written by three others.  Mr.  W.
Timothy Strayer, a summer worker at NBS, had a hand in many earlier versions of the NC-
coding functions.  Mr.  Alton Quist, a research associate from General Dynamics who
worked at NBS for a year ending in June 1985 wrote most of the original version of the NC-
coding system, although only a few lines of it remain.  Dr.  Edward Magrab, formerly an
NBS employee, provided Monarch language versions of the three top-level zero-finding
functions.  He also wrote the three Monarch language zero-finding subroutines which are
called by the top-level functions.

        2.  LISP FUNCTIONS

When it is run with all options off and the input process plan has already been enhanced, the
Data Execution module uses eight core functions plus a few miscellaneous and property list
manipulation functions (in addition to the functions provided by Franz LISP).  When it is
run with all options on and the input process plan is not enhanced, the module uses 19 core
functions, 57 NC-coding functions, quite a few miscellaneous and property list
manipulation functions and several hundred graphics, verification, and geometry functions.
The core functions and the NC-coders are listed in Table 7.  Half the core functions are in
the exec2 directory and half in the proc2 directory.  All of the NC-coders are in the exec2
directory. There are no functions in the exec2 directory which are not listed in Table 7.

Functions not listed in Table 7 are discussed in other papers written for AMRF
documentation.

The function at the top of the hierarchy is "execute_plan".  The real workhorse, though, is
"execute_step", which makes data-driven function calls to over 50 of the top level
verification, drawing, and NC-coding functions.  The operation of these two functions is
described earlier in this paper.
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Table  7.  Data Execution  LISP  Functions

arc_length
cg_chunk
cg_go_backwards
cg_ramp
change_tool
compute_r_plane
cp_chunk
cp_cull
cp_first_pt
cp_int_gen
cp_int_order
cp_length

TOP  LEVEL  NC-CODERS  -  EXEC2

CORE  FUNCTIONS  -  EXEC2

          add_feature
          enhance1_plan
          enhance_tool_parms
          exec_header
          execute_plan
          execute_step
          init_exec_plan
          init_workpiece
          precify

cbore_hole_nc
center_drill_nc
chamfer_in_nc
chamfer_out_nc
close_nc
contour_groove_nc
contour_pocket_nc
csink_hole_nc
face_mill_nc
groove_nc

CORE  FUNCTIONS  -  PROC2

             add_extra_items
             cull_steps
             delete_step
             enhance_step
             insert_face_mill
             insert_step
             order_ops
             pass_depth
             print_plan
             pull_tool_req

hole_nc
init_nc
pocket_nc
set0_center_nc
set0_corner_nc
set0_z_nc
side_contour_nc
straight_groove_nc
tap_hole_nc
text_nc

NC-CODING SUBORDINATES  -  EXEC2

cp_next_init
cp_next_pt
cp_pick_angle
cp_ramp
cp_traverse
cs_chunk
cs_cull
cs_traverse
depth_loop1
depth_loop2
feed_rate
gets_and_puts
groove_chunk

letter_chunk
mill_letter
nc_hunk
nc_line
pocket_chunk
print_nc_file
print_nc_line
radial_stepover
rev_path_edoc
spindle_speed
straight_groove_chunk
sub_face_mill
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